從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標系中的一個二元一次方程所表示的圖形。求兩條直線的交點,只需把這兩個二元一次方程聯(lián)立求解,當這個聯(lián)立方程組無解時,兩直線平行;有無窮多解時,兩直線重合;只有一解時,兩直線相交于一點。常用直線向上方向與 X 軸正向的 夾角( 叫直線的傾斜角 )或該角的正切(稱直線的斜率)來表示平面上直線(對于X軸)的傾斜程度。可以通過斜率來判斷兩條直線是否互相平行或互相垂直,也可計算它們的交角。直線與某個坐標軸的交點在該坐標軸上的坐標,稱為直線在該坐標軸上的截距。直線在平面上的位置,由它的斜率和一個截距完全確定。在空間,兩個平面相交時,交線為一條直線。因此,在空間直角坐標系中,用兩個表示平面的三元一次方程聯(lián)立,作為它們相交所得直線的方程。
教學目標
1、知識與技能
(1)理解直線方程的點斜式、斜截式的形式特點和適用范圍;
(2)能正確利用直線的點斜式、斜截式公式求直線方程。
(3)體會直線的斜截式方程與一次函數(shù)的關(guān)系.
2、過程與方法
在已知直角坐標系內(nèi)確定一條直線的幾何要素——直線上的一點和直線的傾斜角的基礎(chǔ)上,通過師生探討,得出直線的點斜式方程;學生通過對比理解“截距”與“距離”的區(qū)別。
3、情態(tài)與價值觀
通過讓學生體會直線的斜截式方程與一次函數(shù)的關(guān)系,進一步培養(yǎng)學生數(shù)形結(jié)合的思想,滲透數(shù)學中普遍存在相互聯(lián)系、相互轉(zhuǎn)化等觀點,使學生能用聯(lián)系的觀點看問題。
- PC官方版
- 安卓官方手機版
- IOS官方手機版